Discrete Homotopy and Homology Groups

Hélene Barcelo
Mathematical Sciences Research Institute

BIRS — Algebraic Combinatorixx 2
Mayl6, 2017



Overview



Overview

» Invariants of Dynamic Processes: A7 (A, 0,)
(Atkin, Maurer, Malle, Lovasz 1970's)



Overview

» Invariants of Dynamic Processes: A7 (A, 0,)
(Atkin, Maurer, Malle, Lovasz 1970's)

» Discrete Homotopy Theory for Graphs

Ag(A, (To) = Wl(rz, Vo)/N(3,4 cycles) = Wl(sz,Xo)



Overview

» Invariants of Dynamic Processes: A7 (A, 0,)
(Atkin, Maurer, Malle, Lovasz 1970's)

» Discrete Homotopy Theory for Graphs
Ag(A, (To) = Wl(rz, Vo)/N(3, 4 cycles) = Wl(sz,Xo)

» Discrete Homotopy for Cubical Sets



Overview

v

Invariants of Dynamic Processes: Af(A, 0,)
(Atkin, Maurer, Malle, Lovasz 1970's)

Discrete Homotopy Theory for Graphs

v

Ag(A, (To) = Wl(rz, Vo)/N(3,4 cycles) = Wl(sz,Xo)

v

Discrete Homotopy for Cubical Sets

v

Discrete Homology Theory



Overview

v

Invariants of Dynamic Processes: Af(A, 0,)
(Atkin, Maurer, Malle, Lovasz 1970's)

Discrete Homotopy Theory for Graphs

v

Ag(A, (To) = Wl(rz, Vo)/N(3,4 cycles) = Wl(sz,Xo)

v

Discrete Homotopy for Cubical Sets

v

Discrete Homology Theory

v

Unexpected Application of Discrete Homotopy Theory

Ai(Cay(G/N)) = N

detects normal subgroups
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(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White)
Definitions

1. T - graph (A simplicial complex; X metric space)
vo - distinguished vertex (oo; x0)
Z" - infinite lattice (usual metric)

2. An(T, w) - set of graph homs f: Z" — V(I), that is,

if d(3,b) =1 in Z" then d(f(&), f(b)) = 0 or 1, with
f(I') = v almost everywhere

3. f,g are discrete /lomotopic if there exist h € An1(l, vo) and k,£ € N
such that for all i € Z",

- -,

h(7', k) = F(7)
h(i',0) = g(7)

4. An(T, vo) - set of equivalence classes of maps in A,(I, vo)
Note: translation preserves discrete homotopy
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Group Structure

» Multiplication: for f, g € A,(T, vp) of radius M, N,
i

o [ L=
fg()—{g(;l_(M+N),i2,...i,,) h>M

Vo

Vo
Vo

Lf e |° [f g] = [f][e]

Vo

Vo

Vo
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Discrete Homotopy Theory for Graphs

Group Structure

-,

> Identity: e(i) = v

Example (n = 2)

-,

1|1 B M
Of|R O T

f: -1|S | X
—2|R E P
-2 -1 0

~< X >0
Nnh —-=20

Viezn

> Inverses: f~1(i) = f(—i1,..

in) Yi€Zn
1{C O M B |
O|N A T OR
-1/ X X I S
-2|S U P E R
—2-1 0 1 2
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Examples

(are)
A(A ) -
AT o) -

(o)

Al(l’, V()) = 7T1(r, VQ)/N(3,4 cycles) = 7'('1()<r7 Vo)

1

Z

(2-dim cell complex: attach 2-cells to A, [0 of T")
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> AZ(A, GO) = An(r17 UO)
% vertices = all maximal simplices of A of dim> ¢
(0,0") € E(T}) < dim(cNo’) >gq

» Al(X,xo) r-Lipschitz maps f: Z" — X (stabilizing in all
directions)

f: X = Yis r-Lipschitz <= d(f(x1),f(x2)) < rd(xi,x2)
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Is it a Good Analogy to Classical Homotopy?

1. If I is connected, A,(T, vp)independent of vy

2. Siefert-van Kampen: if
r=ryur,
I"; connected
vwelinl,
1 N> connected
A\, O lie in one of the [

then
AT, vo) = A1(T1, vo) * A1 (T2, vo) /N([4] * []7)

for f aloopinliNTly
3. Relative discrete homotopy theory and long exact sequences

4. Associated discrete homology theory...?



Discrete Homology Theory for Graphs

(B., Capraro, White)



Discrete Homology Theory for Graphs

(B., Capraro, White)
Necessities



Discrete Homology Theory for Graphs
(B., Capraro, White)
Necessities

1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}



Discrete Homology Theory for Graphs
(B., Capraro, White)
Necessities

1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}

2. Singular n-cube o: Q, — I' graph homomorphism



Discrete Homology Theory for Graphs
(B., Capraro, White)
Necessities

1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}
2. Singular n-cube o: Q, — I' graph homomorphism

3. Ly(IN) := free abelian group generated by all singular n-cubes o



Discrete Homology Theory for Graphs
(B., Capraro, White)
Necessities
1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}
2. Singular n-cube o: Q, — I' graph homomorphism
3. Ly(IN) := free abelian group generated by all singular n-cubes o

» i*® front and back faces of o are singular (n — 1)-cubes



Discrete Homology Theory for Graphs

(B., Capraro, White)
Necessities
1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}
2. Singular n-cube o: Q, — I' graph homomorphism
3. Ly(IN) := free abelian group generated by all singular n-cubes o

» i*® front and back faces of o are singular (n — 1)-cubes
» Front: (Alo)(a1,...,an—1) =0o(a1,...,a8i-1,0,8;,...,an_1)



Discrete Homology Theory for Graphs

(B., Capraro, White)
Necessities
1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}
2. Singular n-cube o: Q, — I' graph homomorphism
3. Ly(IN) := free abelian group generated by all singular n-cubes o

» i*® front and back faces of o are singular (n — 1)-cubes
» Front: (Alo)(a1,...,an—1) =0o(a1,...,a8i-1,0,8;,...,an_1)
» Back: (BI"O')(bl, ceey b,,_l) = (T(bl, Cey b;_l, 1, b,', ceey bn—l)



Discrete Homology Theory for Graphs

(B., Capraro, White)
Necessities
1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}
2. Singular n-cube o: Q, — I' graph homomorphism
3. Ly(IN) := free abelian group generated by all singular n-cubes o

i*® front and back faces of o are singular (n — 1)-cubes
Front: (Afc)(a1,...,an-1) =0(a1,...,ai-1,0,a;,...,an-1)
Back: (BIHO')(bl, ceey b,,_l) = (T(bl, ey b,'_17 1, b,', ey bn—l)
Degenerate singular n-cube: if 37 s.t. (A?0) = (Blo)

vV vy vVvyy



Discrete Homology Theory for Graphs

(B., Capraro, White)
Necessities

1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}
2. Singular n-cube o: Q, — I' graph homomorphism
3. Ly(IN) := free abelian group generated by all singular n-cubes o

i*® front and back faces of o are singular (n — 1)-cubes
Front: (Afc)(a1,...,an-1) =0(a1,...,ai-1,0,a;,...,an-1)
Back: (BIHO')(bl, ceey b,,_l) = (T(bl, ey b,'_17 1, b,', ey bn—l)
Degenerate singular n-cube: if 37 s.t. (A?0) = (Blo)

D,(T) := free abelian group generated by all degenerate
singular n-cubes

vV vy vy VvVYyy



Discrete Homology Theory for Graphs

(B., Capraro, White)
Necessities

1. Discrete n-dim cube Q, = {(a1,...,an) | @ =0 or 1}
2. Singular n-cube o: Q, — I' graph homomorphism
3. Ly(IN) := free abelian group generated by all singular n-cubes o

i*® front and back faces of o are singular (n — 1)-cubes
Front: (Afc)(a1,...,an-1) =0(a1,...,ai-1,0,a;,...,an-1)
Back: (BIHO')(bl, ceey b,,_l) = (T(bl, ey b,'_17 1, b,', ey bn—l)
Degenerate singular n-cube: if 37 s.t. (A?0) = (Blo)

D,(T) := free abelian group generated by all degenerate
singular n-cubes

vV vy vy VvVYyy

Ca(T) := La(I)/Dn(T)

elements of C, correspond to n-chains
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Necessities
4. Boundary operators 0, for each n > 1

n

On(0) = ) (-1)/(A(0) — Bf())

i=1

extend linearly to £,(I)

an(Dn(r)) < anl(r)

50 Op: Cp(T) = Co—1(T) is well-defined
8,, o 8n+1 =0

vV vy VvVvYy
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Discrete Homology Theory for Graphs

Definition
The discrete homology groups of T

DH,(T) = Ker(0,)/Im(0p+1)

Examples
DHn(—) =0 ¥n>1 DHp(A) =0 VYn>1
DH,(0)=0 ¥n>1 DH,(Q) = Z
Definition

If I C T, then 9,(Cy(I")) C C,h—1(I"") and there are maps
On: Co(T,T") = Co(M)/ Co(T") — Cpa (T, T)
The relative homology groups of (I',T"):

DH,(T,T") = Ker(9,)/Im(0p+1)
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How to Judge if Homology Theory is Good?

1. Hurewicz Theorem: DHy(I) = AP(T) n>2

2. Discrete version of Eilenberg-Steenrod axioms and
Mayer-Vietoris sequence

3. Which groups can we obtain?

» For a fine enough rectangulation R of a compact, metrizable,
smooth, path-connected manifold M, let ' be the natural
graph associated to R. Then

771(/\/,) = Al(FR)

» For each abelian group G and i € N, there is a finite
connected simple graph I such that

DHn(r)—{G =
0 ifn<n
» There is a graph S" such that

Z ifk=n

DHI(S") = {0 if k £ n
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Unexpected Application of Discrete Homotopy Theory
S := finite set
G := (S): finitely generated group
Cay(G,S): graph with
> Vertex set: G
» Edge set: {(g,85): g€ G,s€ S}
> Label set: S

Note: a path from e to g is a word in S equal to g. Words along
loops are relators in G (i.e: equal to e.)

Theorem

If Fs is the free group on S and N is a normal subgroup of Fg, then

m1(Cay(Fs/N,S),e) = N

The fundamental group of the Cayley graph detects normal
subgroups.
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In general (when G is not free),
7T1(Cay(G/N,§), e) FN

because relators of G also contribute to m1(Cay(G/N), e).

We need a tool that ignores small loops but detects big ones.

Theorem (Delabie-Khukhro 2017)

Al,r(Cay(G/Nvg)a e) =N
for any constant r such that 2k < 4r < n, where
k = max{|g|rs g € R} and n=inf{|g|c:g € N\ {e}}.

The discrete fundamental group of the Cayley graph detects
normal subgroups.



Thank-you!



Q>



Complex K(m,1) Spaces

*A(SQ braid arrangement:
{ZEC”’Z;:ZJ'}, i<y



Complex K(m,1) Spaces Real K(m,1) Spaces

.ASQ braid arrangement: Aﬂ,§73 3-equal subspace arr:
{ZEC”’Z;ZZj},i<j {)?'GR”’X,-:XJ-ZX;(},i<j<k



Complex K(m,1) Spaces Real K(m,1) Spaces

.ASQ braid arrangement: Aﬂ,§73 3-equal subspace arr:
{ZEC”’Z;ZZj},i<j {)?'GR”’X,-:XJ-ZX;(},i<j<k

MAS,) s K(r, 1)
(Fadell-Neuwirth 1962)



Complex K(m,1) Spaces

*A(SQ braid arrangement:
{ZEC”’Z;:ZJ'}, i<y

MAS,) s K(r, 1)
(Fadell-Neuwirth 1962)

Real K(m,1) Spaces

Aﬂ,§73 3-equal subspace arr:
{)?'GR”’X,-:XJ-:xk}, i<j<k

M(A% ) is K(,1)
(Khovanov 1996)



Complex K(m,1) Spaces

*A(SQ braid arrangement:
{ZEC”’Z;:ZJ'}, i<y

MAS,) s K(r, 1)
(Fadell-Neuwirth 1962)

wl(M(A(f,:,z)) & pure braid gp.

(Fox-Fadell 1963)

Real K(m,1) Spaces

Aﬂ,§73 3-equal subspace arr:
{)?'GR”’X,-:XJ-:xk}, i<j<k

M(A% ) is K(,1)
(Khovanov 1996)



Complex K(m,1) Spaces

*A(SQ braid arrangement:
{ZEC”’Z;:ZJ'}, i<y

MAS,) s K(r, 1)
(Fadell-Neuwirth 1962)

wl(M(A(f,:,z)) & pure braid gp.

(Fox-Fadell 1963)

Real K(m,1) Spaces

Aﬂ,§73 3-equal subspace arr:
{)?'GR”’X,-:XJ-:xk}, i<j<k
M(A% ) is K(,1)

(Khovanov 1996)

m1(M(A53)) = pure triplet gp.
(Khovanov 1996)



Complex K(m,1) Spaces Real K(m,1) Spaces

.ASQ braid arrangement: Aﬂ,§73 3-equal subspace arr:
{ZEC”’Z;ZZj},i<j {)?'GR”’X,-:XJ-ZX;(},i<j<k
M(A7,) is K(m,1) M(A% ) is K(,1)
(Fadell-Neuwirth 1962) (Khovanov 1996)

wl(M(A(fiz)) = pure braid gp. w1 (M(AJ3)) = pure triplet gp.
(Fox-Fadell 1963) (Khovanov 1996)

m1(M(C-ified refl. arr. type W))
= pure Artin group

~ Ker(¢)
(Brieskorn 1971)



Complex K(m,1) Spaces

*A(SQ braid arrangement:
{ZEC”’Z;:ZJ'}, i<y

MAS,) s K(r, 1)
(Fadell-Neuwirth 1962)

wl(M(A(f,:,z)) & pure braid gp.
(Fox-Fadell 1963)

m1(M(C-ified refl. arr. type W))
= pure Artin group

~ Ker(¢)
(Brieskorn 1971)

Real K(m,1) Spaces

Aﬂ,§73 3-equal subspace arr:
{)?'GR”’X,-:XJ-:xk}, i<j<k

M(A% ) is K(,1)
(Khovanov 1996)

m1(M(A53)) = pure triplet gp.
(Khovanov 1996)

m1(M(Wh,3)) = Ker(¢')
where W, 3 is a 3-parabolic
subgroup of type W
(B-Severs-White 2009)
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Unexpected Application of Discrete Homotopy Theory

Complex K(m,1) Spaces Real K(m,1) Spaces

A(EQ braid arrangement: AI,R,<73 3-equal subspace arr:

{ZE(C”‘Z,-:ZJ-},i<j {YGR”‘X,-:XJ-:X;(},i<j<k

M(C-ified refl. arr.) is K(m,1)  M(W,3) is K(m,1)

(Deligne 1972) (Davis-Janusz.-Scott 2008)
Theorem

AP=k+L( Coxeter complex W) = m(M(W,x)) 3<k<n



Unexpected Application of Discrete Homotopy Theory

Complex K(m,1) Spaces Real K(m,1) Spaces

A(EQ braid arrangement: AI,R,<73 3-equal subspace arr:

{ZE(C”‘Z,-:ZJ-},i<j {YGR”‘X,-:XJ-ZX;(},i<j<k

M(C-ified refl. arr.) is K(m,1)  M(W,3) is K(m,1)

(Deligne 1972) (Davis-Janusz.-Scott 2008)
Theorem

AP=k+L( Coxeter complex W) = m(M(W,x)) 3<k<n

Note: We have replaced a group (1) defined in terms of the
topology of a space with a group (A1) defined in terms of the
combinatorial structure of the space.
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Homologies of path complexes and digraphs, by A. Grigoryan, Y. Lin, Y.
Muranov, S.-T. Yau

A path complex P on a finite set V is a collection of paths (=sequences of
points) on V such that if a path v belongs to P then a truncated path that is
obtained from v by removing either the first or the last point, is also in P. Any
digraph naturally gives rise to a path complex where allowed paths go along the
arrows of the digraph.

A path complex P gives rise to a chain complex with an appropriate boundary
operator ¢ that leads to the notion of path homology groups of P.
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A path complex P on a finite set V is a collection of paths (=sequences of
points) on V such that if a path v belongs to P then a truncated path that is
obtained from v by removing either the first or the last point, is also in P. Any
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operator ¢ that leads to the notion of path homology groups of P.

Conjecture: Path homology and discrete homology groups are isomorphic for
undirected graphs.



What is Next?
(B., Green, Welker)

Homologies of path complexes and digraphs, by A. Grigoryan, Y. Lin, Y.
Muranov, S.-T. Yau

A path complex P on a finite set V is a collection of paths (=sequences of
points) on V such that if a path v belongs to P then a truncated path that is
obtained from v by removing either the first or the last point, is also in P. Any
digraph naturally gives rise to a path complex where allowed paths go along the
arrows of the digraph.

A path complex P gives rise to a chain complex with an appropriate boundary
operator ¢ that leads to the notion of path homology groups of P.

Conjecture: Path homology and discrete homology groups are isomorphic for
undirected graphs.

Note: Path complexes can be regarded as generalization of the notion of
simplicial complexes. Any simplicial complex S determines naturally a path
complex by associating with any simplex from S the sequence of its vertices.
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